Vol 17, No 3 (2013) > Articles >

The Effect Zeolite Addition in Natural Rubber Polypropylene Composite on Mechanical, Structure, and Thermal Characteristics

Nurdin Bukit 1 , Erna Frida 2

Affiliations:

  1. Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Medan 20221, Indonesia
  2. Department of Engineering, University Quality of Medan, Medan 20221, Indonesia

 

Abstract:

This  study  was  conducted  to  determine  the  effect  of  zeolite  as  filler  on  mechanical  properties,  and  thermal  structure  blends  of  natural  rubber  and  polypropylene  (NR/PP).  In  this  study, NR/PP/PP-g-MA  blends  was  filled  uncalcined zeolite and calcined zeolite at different weight percent of the 2, 4, and 6%. Samples were characterized to determine the tensile  strength,  fracture  elongation  and  Young's  modulus.  Structure  of  the  samples  was  investigated  using  XRD method and thermal characteristics were analyzed using DTA/TGA technique. The results obtained for tensile strength showed  a  significant  influence  with  the  addition  zeolite  of  the  NR/PP  blends  at  2%  by  weight  of  the  composition  (8 MPa) and decreased with increasing zeolite composition uncalcined zeolite or calcined zeolite. At 2% to 6% by weight of an increase in Young's modulus, for which uncalcined zeolite function more effectively than the calcined zeolite. On the  other  hand,  the  addition  of  uncalcined  zeolite  and  calcined  zeolite  did  not  result  in  decreased  fracture  elongation. The  XRD  analysis  zeolite  indicate  the  existence  of  amorphous  phase  and  crystalline  mineral  type  mordenite (CaAl2Si10O24.7  H2O).  In  general,  cristality  of  samples  filled  with  calcined  zeolite  slightly  higher  than  the  uncalcined zeolite  at  the  same  amount and  intercalation  occurs  between  the  zeolite  matrix  NR/PP.  Thermal  analysis  showed  that the samples are filled with calcined zeolite has a thermal resistance higher than the uncalcined zeolite, the melting point NR/PP 165.0 °C with the addition of 6 wt% zeolite melting point to 186.7 °C

Keywords: mechanical, natural rubber, structure, thermal, zeolite
Published at: Vol 17, No 3 (2013) pages: 113-120
DOI:

Access Counter: 715 views, 595 PDF downloads, .

Full PDF Download

References:

Bahruddin, Reaktor. 11 (2007) 71.

E. Frida, Makara Series Technol. 16 (2012) 171.

W. Xu, G. Liang, H. Zhai, S. Tang, G. Hang, W.P. Pan, J. Eur. Polym. 39 (2003) 1467.

M.A. Osman, A. Atallah, M. Muller, U.W. Suter. J. Polym. 42 (2001) 6545.

C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner, J. Compos. Sci. Technol. 62 (2002) 1105.

J.S. Kim, D.H. Reneker, Polym. Compos. 20 (1999) 124.

J.W. Brinketen, S.C. Debnath, L.A.E. M. Reuvenkamp, J.W.M. Noordemeer, Com. Sci. Tech. 68 (2003) 1165.

S. Siriwardena, H. Ismail, U.S. Ishiaku, J. Polym. Int. 50 (2001) 707.

L.M. Calvo, S. Noskin, S. Kahan, United States Paten No. #6036998, March 14th, 2000.

S. Zhang, Y. Li, S. Qu, W. Chen, J. Tribol. Lett. 38 (2010) 135.

Z. Gu, G. Song, W. Liu, P. Li, L. Gao, H. Li, X. Hu, J. Appl. Clay. Sci. 46 (2009) 241.

B. Rattanasupa, W. Keawwattana, Kasetsart, J. Natur. Sci. 41 (2007) 239.

A.C. Karmakar, J. Mat. Sci. Lett. 16 (1997) 462. [14] N.S.M. El-Tayeb, K.W. Liew, J. Wear. 266 (2009) 275.

A. Keskin, Essa, J. Sci. Res. 6 (2011) 4893.

L. Bokobza, Compos. Inter. 13 (2006) 345.

Setiadi, A. Pertiwi, Prosiding Kongres dan Simposium Nasional, MKICS, 2C, Semarang, Indonesia, 2007, p.81. [In Indonesia]

N. Bukit, Makara Series Technol. 16/2 (2012) 121.

G.E. Christidis, D. Moraetis, E. Keheyan, L. Akhalbedashvili, N. Kekelidze, Gevorkyan, R. Yeritsyan, H. Sargsyan, Appl. Clay Sci. 24 (2003)

K. Rangsriwatananon, A. Chaisena, C. Thongkasam, J. Porous Mater. 15 (2008) 499.

P. Kowalczyk, M. Sprynskyy, A. PTerzyk, M. Lebedynets, J. Namiesnik, B. Buszewsk, J. Coll. Interf. Sci. 297 (2006) 77.

T.Q. Nguyen, G. Donald. Baird Advances in Polymer Technol. 25/4 (2006) 270.

H. Ismail, L. Mega, Polym. Plast. Tech. Eng. 40 (2001) 463.

J.R. Leblance, Prog. Polym. Sci. 27 (2002) 627.

D. Metin, F. Tihminlioglu, D. Balkose, S. Ulku, Composites. Appl. Sci. Manufac. 35 (2004) 23.

M. Frounchi, S. Dadbin, Z. Salehpour, M. Nofereti, J. Membrane Sci. 282 (2006)142.

S.Y. Lee, I.A. Kang, G.H. Doh, W.J. Kim, J.S. Kim, H.G. Yoon, Q. Wu, Polym. Lett. 2/2 (2008) 78.

M. Mondragon, E.M. Hernandez, J.L. Rivera Armenta, F.J. Rodríguez-González, J. Carbohydr. Polym. 77 (2009) 80.

M.E. Davis, J. Meso. Mat. 21 (1989) 21.

D.R. Treadwell, D.M. Dabbs, I.A. Aksay, J. Chem. Mater. 8 (1989) 2056.

L. Dewimile, B. Bressojn, L. Bokobza, J. Polym. 46 (2005) 4135.

B. Chaichua, P. Prasassarakich, S. Poompradub, J. Sol-Gel Sci. Tehnol. 52 (2009) 219.

I.A. Aksay, D.M. Dabbs, M. Sarikaya, J. Am. Ceram. Soc. 74/ 2 (1991) 2343.

H. Salmah, H. Ismail, A. Bakar, J. Polym. Plast. Technol. Eng. 44 (2005) 863.

P.N. Alam, T. Rihayat, Rekayasa Kimia dan Lingkungan. 16 (2007) 1. [In Indonesia]