Vol 20, No 3 (2016) > Chemical Engineering >

Characterization and Utilization of Calcium Oxide (CaO) Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil

Aldes Lesbani 1 , Sabat Okta Ceria Sitompul 1 , Risfidian Mohadi 1 , Nurlisa Hidayati 1

Affiliations:

  1. Department of Chemistry, Faculty of Mathematics andNatural Sciences, Universitas Sriwijaya, Indralaya Ogan Ilir 30662, South Sumatera, Indonesia

 

Abstract: Thermal decomposition of fish bones to obtain calcium oxide (CaO) was conducted at various temperatures of 400, 500, 800, 900, 1000, and 1100 °C. The calcium oxide was then characterized using X-ray diffractometer, FTIR
spectrophotometer, and SEM analysis. The calcium oxide obtained from the decomposition at 1000 °C was then used as a catalyst in the production of biodiesel from waste cooking oil. Diffraction pattern of the calcium oxide produced from decomposition at 1000 °C showed a pattern similar to that of the calcium oxide produced by the Joint Committee on Powder Diffraction Standard (JCDPS). The diffractions of 2θvalues at 1000 °C were 32.2, 37.3, 53.8, 64.1, and67.3 deg. The FTIR spectrum of calcium oxide decomposed at 1000 °C has a specific vibration at wave-length 362 cm-1, which is similar to the specific vibration of Ca-O. SEM analysis of the calcium oxide indicated that the calcium oxide’s morphology shows a smaller size and a more homogeneous structure, compared to those of fish bones. Theuse of calcium
oxide as a catalyst in the production of biodiesel from waste cooking oil resulted in iod number of 15.23 g/100 g KOH,
density of 0.88 g/cm3, viscosity of 6.00 cSt, and fatty acid value of 0.56 mg/KOH. These characteristic values meet the National Standard of Indonesia (SNI) for biodiesel.
Keywords: biodiesel, calcium oxide, fish’ bones, waste cooking oil
Published at: Vol 20, No 3 (2016) pages: 121-126
DOI:

Full PDF Download

References:

F. Ma, M.A. Hanna, Bioresour. Technol. 70 (1999) 15.

M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, Energy & Fuel. 22/1 (2008) 217.

M. Di Serio, M. Cozzolino, M. Giordano, R. Tesser, P. Patrono, E. Santacesaria, Ind. Eng. Chem. Res. 46/20 (2007) 6384.

Y.C. Sharma, B. Singh, S.N. Upadhyay, Fuel. 87/12 (2008) 2373.

J.K. Heydarzadeh, G. Amini, M.A. Khalizadeh, M. Pazouki, A.A. Ghoreyshi, M. Rabeai, G.D. Najafpour,World Appl. Sci. J. 9/11 (2010) 1312.

J. Dhainaut, J-P. Dacquin, A.F. Lee, K. Wilson, Green Chem. 12 (2010) 303.

K. Noiroj, P. Intarapong, A. Luengnaruemitchai, S. Jai-In, Renew. Energy. 34 (2009) 1150.

A.A. Refaat, Int. J. Environ. Sci. Tech. 8/1 (2011) 221.

Lesbani, P. Tamba, R. Mohadi, F. Riyanti, Indonesian J. Chem. 13/2 (2013) 180. J. Venkatesan, S.K. Kim, Materials. 3 (2010) 4772.

S. Mondal, B. Mondal, A. Dey, S.S. Mukhopadhyay, J. Miner. Mater. Charact. Eng. 11/1 (2012) 67.

N. Nakatani, H. Takamori, K. Takeda, H. Sukugawa,

Bioresour. Technol. 100/3 (2009) 1513.

N. Viriya-empikul, P. Krasae, B. Puttasawat, B. Yoosuk, N. Chollacoop, K. Faungnawakij, Bioresour. Technol. 101/10 (2010) 3767.

T.N. Blanton, C.L. Barnes, JCPDS-International

Centre For Diffraction Data-Advances in X-Ray Analysis. 48 (2005) 51.

S. Agrawal, B. Singh, Y.C. Sharma, Ind. Eng. Chem. Res. 51/37 (2012) 11880.

S. Hu, Y. Wang, H. Han, Biomass and Bioenergy. 35/8 (2011) 3635.

Chakraborty. R, Bepari. S, Banerjee. A, Bioresour. Technol. 102/3 (2011). 3610-3618.

P-L. Boey, G.P. Maniam, S.A. Hamid, Bioresour.

Technol. 100/24 (2009) 6368.

Z. Wei, C. Xu, B. Li, Bioresour. Technol. 100/11 (2009) 2885.

Y. Tang, J. Xu, J. Zhang, Y. Lu, J. Cleaner Prod. 42/1 (2013) 203.

Badan Standarisasi Nasional. SNI 04-7182-2006,

Biodiesel, Jakarta, Badan Standarisasi Nasional, p. 9. [in Indonesian].

R.M. Ali, M.M. Abd El Latif, H.A. Farag, Am. J. Appl. Chem. 3/3-1 (2015) 45.