Vol 14, No 1 (2010) > Articles >

Ontology-Based Automatic Classification for News Articles in Indonesian Language

Prajna Basnur 1 , Dana Sensuse 1

Affiliations:

  1. Fakultas Ilmu Komputer, Universitas Indonesia

 

Abstract:

Searching specific information will be difficult if only rely on query. Choosing less specific queries will result many irrelevant information fetched by the system. One of the most successful way to overcome this problem is to perform document classification based on the topic. There are many methods that can be used to conduct such a document classification, such as statistical and machine learning approaches. However, those document classification methods require training data or learning documents. In this study, the authors attempted to classify documents using a method that doesn’t require learning documents. This classification method uses ontology to classify documents. Document classification by using ontology is done by comparing the value of similarity among documents and existing node in the ontology. A document is classified into a category or a node, if it has the highest similarity value in one of the nodes in the ontology. The results showed that the ontology can be used to perform document classification. Recall value is 97.03%, precision is 91.63%, and f-measure is 94.02%.

Keywords: ontology, Naïve-Bayes, stopwords, stemming
Published at: Vol 14, No 1 (2010) pages: 29-35
DOI:

Access Counter: 2097 views, 2 Untitled downloads, 2137 PDF downloads, .

Full PDF Download

References:

D. Anggraeni, Skripsi Sarjana, Fakultas Ilmu Komputer, Universitas Indonesia, Indonesia, 2009.

S. Susanto, Skripsi Sarjana, Fakultas Ilmu Komputer, Universitas Indonesia, Indonesia, 2006

S.Y. Lim, M.H. Song, S.J. Lee, Ontology-based Automatic Classification of Web Documents, ICIC 2006, LNAI 4114, Springer-Verlag, Berlin, 2006, p.690.

L. Tenenboim, B. Shapira, P. Shoval, Proceedings of the Intelligent Information and Engineering Systems Conference, Varna, Bulgaria, 2008.

Y. Wibisono, Seminar Nasional Matematika, Universitas Pendidikan Indonesia, Bandung, Jawa Barat 2005.

N.F. Noy, D.L. McGuinness, Ontology Development 101: A Guide to Creating Your First Ontology, Knowledge Systems Laboratory (KSL) of Department of Computer Science Stanford, USA: Technical Report, KSL-01-05, 2001.

R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,Addison Wesley, New York, 1999, p.544.

L.M. Khodra, Y. Wibisono, Konferensi Nasional Sistem Informasi, Universitas Pasundan Bandung, Indonesia, Februari 2006.

G. Salton, M.J. McGill, Introduction to Modern Information Retrieval, McGraw Hill, New York, 1986, p.400.

D.K. Kang, A. Silvescu, V. Honavar, Proceedings of the Tenth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006), Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2006, p.45.

T. Mitchell, Generative and Discriminative Classifiers: Naïve Bayes and Logistic Regression, in Machine Learning, McGraw Hill, New York, 2006, p.414.