Vol 13, No 2 (2009) > Articles >

Semi-Automatic Image Segmentation for Volumetric Visualization of Pelvis CT Scan-Images

Suprijanto Suprijanto 1 , Farida Muchtadi 1 , Irwan Setiawan 2


  1. Kelompok Keahlian Instrumentasi dan Kontrol, Program Studi Teknik Fisika, Fakultas Teknologi Industri,Institut Teknologi Bandung, Bandung 40132, Indonesia
  2. Program Magister Instrumentasi dan Kontrol, Fakultas Teknologi Industri, Institut Teknologi Bandung,Bandung 40132, Indonesia



The current development of computerized tomography (CT) has enable us to obtain cross sectional image using multi slicing techniques in an order of few seconds. The obtained images represent several tissue structures on cross section slice being imaged. One challenge to help diagnosis using CT images is extracting an anatomic structure of interest using a method of image segmentation and volumetric visualization with the assistance of computers. In case of volumetric visualization of pelvis bones extracted from multi-slice CT images, whole images which are containing part of pelvis bone structures must be segmented. In this research, an image segmentation technique based on active contour is implemented for semi-automatic multi slice image segmentation. Image segmentation steps are initialized with a define model of 2D curve on the first slice image manually. Next, its model curve is deformed to reach the final result of 2D curve that fits to boundary edges of pelvis bone image. The final result of 2D curve on previous slice image was used as an initialization model of 2D curve on the next slice images. This process will continue until the final slice image. This segmentation method was compared with the segmentation method based on threshold from homogenous intensity distribution and manual segmentation method. Quantitative analysis from the results of segmentation on each slice and qualitative analysis on the representation of volumetric visualization are performed in this research.

Keywords: active contour, image segmentation, multi slice CT images, pelvis bones, volumetric visualization
Published at: Vol 13, No 2 (2009) pages: 59-66

Access Counter: 2208 views, 0 Untitled downloads, 3206 PDF downloads, .

Full PDF Download


J.D. Bronzino, The Biomedical Engineering Handbook 2nd Edition, vol. 1, CRC Press, Boca Raton, 2000, p.61.

I. Bankman, Handbook of Medical Imaging: Processing and Analysis, Academic Press, San Diego, USA, 2000, p. 127.

C.F. Westin, L.M. Lorigo, O. Faugeras, W.E.L. Grimson, S. Dawson, A. Norbash, R. Kikinis, In: S.L. Delp, A.M. DiGioia, B. Jaramaz (Eds.), Medical Image Computing and Computer-Assisted Intervention - MICCAI 2000, Lecture Notes in Computer Science, vol. 1935, Springer Verlag, Berlin, 2000, p. 266.

C. Xu, Department of Electrical and Computer Engineering, Johns Hopkins University, USA, 1999.

F. Derraz, M. Beladgham M. Khelif, Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC ’04), 2 (2004) 675.

M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, International Student Edition, Thomson, Toronto, 2008, p.257.

J. Xie, H. Tsui, W.M.L. Wynnie, Proceedings of the International Conference on Image Processing (ICIP) 4 (2004) 2575.

G. Sundaramoorthi, A. Yezzi, A.C. Mennucci, IEEE Trans. Pattern analysis and Machine Intelligence , 30 (2008) 851.

B. Sumengen, B.S. Manjunath, IEEE Trans. Pattern analysis and Machine Intelligence, 28 (2006) 509.

Y.S. Akgul, C. Kambhamettu, IEEE Trans. Pattern analysis and Machine Intelligence, 25 (2003) 174.

R.V. Cristerna, V.M. Banuelos, O.Y. Suarez, IEEE Trans. On Biomedical Engineering 51 (2004) 459.

Suprijanto, I.M. Farida, Processing the 2th Indonesia Japan Joint Scientific Symposium, Jakarta, Indonesia, 2006.

I.T. Young, J.J. Gerbrands L.J. Van Vliet, Fundamental of Image Processing, The Delft University of Technology, Delft, 2000, p.59.