Vol 14, No 2 (2010) > Articles >

Development of Technology Parameter Towards Shipbuilding Productivity Predictor Using Cubic Spline Approach

Bagiyo Suwasono 1 , Sjarief Widjaja 1 , Achmad Zubaydi 1 , Zaed Yuliadi 2 , I Nyoman Budiantara 3

Affiliations:

  1. Jurusan Teknik Perkapalan, FTK, Institut Teknologi Sepuluh Nopember, Surabaya 60111
  2. PT. PAL Indonesia, Ujung Surabaya 60155
  3. Jurusan Statistika, FMIPA, Institut Teknologi Sepuluh Nopember, Surabaya 60111

 

Abstract:

Ability of production processes associated with state-of-the-art technology, which allows the shipbuilding, is customized with modern equipment. It will give impact to level of productivity and competitiveness. This study proposes a nonparametric regression cubic spline approach with 1 knot, 2 knots, and 3 knots. The application programs Tibco Spotfire S+ showed that a cubic spline with 2 knots (4.25 and 4.50) gave the best result with the value of GCV = 56.21556, and R2 = 94.03%.Estimation result of cubic spline with 2 knots for the PT. Batamec shipyard = 35.61 MH/CGT, PT. Dok & Perkapalan Surabaya = 27.49 MH/CGT, PT. Karimun Sembawang Shipyard = 27.49 MH/CGT, and PT. PAL Indonesia = 19.89 MH/CGT.

Keywords: technology parameter, shipbuilding productivity, cubic spline
Published at: Vol 14, No 2 (2010) pages: 121-127
DOI:

Access Counter: 1119 views, 1271 PDF downloads, .

Full PDF Download

References:

KPIN, Analisa Daya Saing Internasional Sektor Industri, Kebijakan Pembangunan Industri Nasional, Departemen Perindustrian Republik Indonesia, Jakarta, 2004.

M. Porter, Competitive Advantage Creating and Sustaining Superior Performance, SimonSays.com, 1998.

I.P. Mulyatno, Majalah Kapal, 3/1 (2004) 62.

S. Nagatsuka, Study of the Productivity of Japan and South Korea’s Shipbuilding Yards Based on Statistical Data, Japan Maritime Research Institute (JAMRI), The Manufacturing Technology (MANTECH) Program and National Shipbuilding Research Program (NSRP), 2000.

NSRP ASE, Benchmarking of U.S. Shipyard: Industry Report, 2001.

T. Lamb, A. Hellesoy, Journal of Ship Production 18/2 (2002) 79.

A. Bilfarsah, J. Makara Seri Sains, 9/1 (2005) 28.

R.L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd ed, Marcell Dekker, Inc., New York, 1999, p. 438.

T.C.M. Lee, Stat. Probab. Lett. 48 (2002) 71.

B. Anderson, Regression III: advanced methods, lecturer 15: regression spline [internet], 2005 [access: 20 Mei 2005]. Available from: http//socserv.mcmaster,ca/anderson/15.spline.pdf.

M.P. Wand, Comput. Stat. 15 (2000) 443.