Vol 14, No 2 (2010) > Articles >

Shaft Torsional Vibration Response of Vertical Axis Ocean Current Turbine Model Due to Torque Excitation

Adi Husodo 1 , I Ketut Aria Utama 2 , I Made Ariana 2

Affiliations:

  1. Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Surabaya 60111
  2. Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya 60111

 

Abstract:

The current research aimed to study the torsional vibration response of Vertical Axis Ocean Current Turbine due to randomly torque excitation pattern, owing to the variety of ocean current velocity. The turbine model is composed of 3 aluminum blades of NACA 0018 connected to steel shaft. Turbine dimensions are 10 cm of chord, 1.8 cm of chamber and 100 cm of span. The variation of ocean current velocity is 0.5 m/s, 1.0 m/s, 1.5 m/s, 2.0 m/s, 2.5 m/s and 3.0 m/s. The Model has 2 degree of freedom which is described into two 2nd order differential equations. The eigenvalue solution yields the model’s natural frequencies; 201,38 rad/s and 457.91 rad/s. Fourier series is used to define the equation of torsional excitation, whilst the vibration equation is solved using Laplace Transform. According to analysis, there is no resonance occur. That because of the system’s natural frequencies is diverse to the magnitude of excitation frequencies. Model will be statically twisted first before vibrated. The response will be transient first then constantly steady. Furthermore, the bigger torque excitation will cause the bigger angular displacement as well the amplitude.

Keywords: angular displacement, natural frequency, torsional vibration, vertical axis turbine
Published at: Vol 14, No 2 (2010) pages: 133-137
DOI:

Access Counter: 1075 views, 1607 PDF downloads, .

Full PDF Download

References:

Y. Kyozuka, J. Fluid, Sci. Technol. 3/3 (2008) 439.

S. Kiho, M. Shiono, Trans IEE Japan, 1992, 112-D (in Japanese).

Y. Kyozuka, O. Kyoichiro, W. Hisanori, J. Japan Soc. Naval Arch. Ocean Eng., 4 (2006) 39.

M. Shiono, K. Naoi, K. Suzuki, Proc. 17th Int. Offshore & Polar Eng. Conf., Lisbon, Portugal, 2007, p. 288.

T. Torii, H. Ookubo, M. Yamane, K. Sagara, K. Seki, K. Sekita, Proc. 17th Int. Offshore & Polar Eng. Conf., Lisbon, Portugal, 2007, p. 297.

R. Hantoro, I.K.A.P. Utama, Erwandi, Proceeding of the 11th International Conference on QIR, Depok, Indonesia, 2009.

M.J. Khan, G. Bhuyan, M.T. Iqbal, J.E. Quaicoe, App. Energy. 86 (2009) 1823.

J.J. Wu, J. Sound & Vibr. 306 (2007) 946.

D.G. Huang, J. Sound & Vibr. 308 (2007) 692.

Y.Z. Chen, J. Sound & Vibr. 241/3 (2001) 503.

M. Behzad, A.R. Bastami, J. Sound & Vibr. 274 (2004) 985.

Y.N. Al-Nassar, M. Kalyon, M. Pakdemirli, B.O. Al-Bedoor, J. Vibr. & Contr. 13/9-10 (2007) 1379.

R.V. Dukkipati, Solving Vibration Analysis Problems Using Matlab, Newage International (P)

Ltd, New Delhi, 2007, p. 32.

R.V. Dukkipati, Solving Vibration Analysis Problems Using Matlab, Newage International (P)

Ltd, New Delhi, 2007, p. 23.

S.G. Kelly, Theory and Problems of Mechanical Vibrations, Schaum’s Outline Series, McGrawHill, New York, 1996, p. 180.