Vol 15, No 2 (2011) > Articles >

Effect of Copper Addition on Mechanical Properties and Electrical Conductivity of PP/C-Cu Bipolar Plate Composites

Anne Zulfia 1 , Taufik Abimanyu 1 , Verina Dalam 2

Affiliations:

  1. Departemen Metalurgi dan Material, Fakultas Teknik, Universitas Indonesia, Depok 16424, Indonesia
  2. Puslitbangtek Ketenagalistrikan dan Energi Baru Terbarukan, Kementerian Energi dan Sumber Daya Mineral, Jakarta Selatan 12230, Indonesia

 

Abstract:

Bipolar plate is a major component in PEM fuel cell which possess main function of collecting and removing electrons from anode to cathode. Therefore, materials for bipolar plates produced must have high electrical conductivity. To obtain bipolar plate materials which is cheap, lightweight and high conductivity, so it is developed bipolar plates material based on PP/C-Cu composite. PP/C-Cu composites has been made by mixing all materials then compounding, rheomix, hot blending and hot press. Cu (Copper) has been used various from 0.1 wt%, 1 wt% to 2 wt% to increase electrical conductivity of PP/C-Cu composite. It is found that the effect of Cu addition in PP/C-Cu composite has increased tensile strength, flexural strength, flexural modulus, tensile modulus, elongation, electrical conductivity and decreasde porosity, unfortunately the value of electrical conductivity was still lower than standard requirement for bipolar plate fuel cell.

Keywords: bipolar plates, electrical conductivity, mechanical properties, PEM fuel cell, polypropylene matrix composite
Published at: Vol 15, No 2 (2011) pages: 101-106
DOI:

Access Counter: 1030 views, 666 PDF downloads, .

Full PDF Download

References:

R. Chris, S. Scott, Introduction to Fuel Cell Technology, Department of Aerospace and Mechanical Engineering, University of Notre Dame, U.S.A., 2003, p.156.

EG & G Services Parsons Inc., Fuel Cell Handbook, 7th ed., West Virginia, U.S. Departement of Energy, 2004, p.I.37.

Y. Wang, Thesis Master of Applied Science, Chemical Engineering, University of Waterloo, Ontario Canada, 2006.

J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons Ltd., New York, 2000, p.303.

U.S. Fuel Cell Council, Fuel Cell Glossary, 2nd ed., Washington, 2000, p.38.

A. Weber, R. Darling, J. Meyers, J. Newman, In: W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Handbook of Fuel Cells, Fundamentals, Technology and Applications, vol. 1, part 2, John Wiley & Sons Ltd., New York, 2003, p.449.

D.P. Wilkinson, J. St-Pierre, In: W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Handbook of Fuel Cell, Fundamentals, Technology and Applications, vol. 3, Part 3, 2003, p.626.

ASTM International, Annual Book of ASTM Standards, vol. 08.01, West Conshohocken, U.S.A., p.D3159.

A. Zulfia, W.D. Verina, S. Yoghi, Prosiding Seminar Nasional Kluster Riset Teknik Mesin 2009, Potensi Pengembangan Energi Terbarukan dan Material Pendukung Konstruksi Energi Terbarukan, Surakarta, 2009, p.144.

Y. Suharjanto, Skripsi Sarjana, Departemen Metalurgi dan Material, Universitas Indonesia, Indonesia, 2009.

D. Tripathi, Practical Guide to Polypropylene, Rapra Technology Ltd., Shrewsbury, UK, 2002, p.176.

D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, J. Appl. Electrochem. 30 (2000) 101.

M. Cliver, C. Teresa, Polypropylene: The Definitive User's Guide and Databook, Plastic Design Library, 1998, p.126.

K. Scott, W.M. Taama, P. Argyropoulos, J. Appl. Electrochem. 28 (1998) 1389.

K. Scott, In: W. Vielstich, A. Lamm, H.A. Gasteiger (Eds.), Handbook of Fuel Cell, Fundamentals, Technology and Applications, vol. 1, Part 2, 2000, p.70.

L. Quinfeng, H.A. Hjuler, N. Bjerrum, J. Electrochim. Acta 41 (1996) 4219.