Vol 16, No 2 (2012) > Articles >

Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

Muhammad Supardan 1 , Satriana Satriana 2 , Mahlinda Mahlinda 3

Affiliations:

  1. Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  2. Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  3. Balai Riset dan Standardisasi Industri Banda Aceh, Lamteumen Timur, Banda Aceh 23236, Indonesia

 

Abstract:

The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO) using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA) content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step. The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60 oC showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS), which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS) No. 04-7182-2006 for biodiesel. 

Keywords: biodiesel, hydrodynamic cavitation, transesterification, wasted cooking oil
Published at: Vol 16, No 2 (2012) pages: 157-162
DOI:

Access Counter: 2011 views, 1454 PDF downloads, .

Full PDF Download

References:

S. Shah, S. Sharma, M.N. Gupta, Energy Fuels 18 (2004) 154

J.B. Hu, Z.X. Du, Z. Tang, E.Z. Min, Ind. Eng. Chem. Res. 43 (2004) 7928

Y. Zhang, M.A. Dube, D.D. McLean, M. Katesb, Bioresour. Technol. 90/3 (2003) 229.

A.C. Pinto, L.L.N. Guarieiro, M.J.C. Rezende, N.M. Ribeiro, E.A. Torres, W.A. Lopes, P.A. Pereira, J.B. de Andrade, J. Braz. Chem. Soc. 16 (2005) 1313.

S. Hasibuan, S.A. Ma’ruf, Sahirman, Makara Sains 13 (2009) 105

M.J. Haas, A.J. McAloon, W.C. Yee, T.A. Foglia, Bioresour. Technol. 97 (2006) 671.

M.J. Haas, T.A. Foglia, Alternative Feedstocks and Technologies for Biodiesel Production, In: G. Knothe, J. Krahl, J. Van Gerpen (Eds.), The Biodiesel Handbook, AOCS Press, Champaign, IL, 2005, p.302.

Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, J. Am. Oil Chem. Soc. 78 (2001) 703.

B. Freedman, E.H. Pryde, T.L. Mounts, J. Am. Oil Chem. Soc. 61 (1984) 1638

K. Liu, J. Am. Oil Chem. Soc., 71 (1994) 1179.

M. Canakci, J. Van Gerpen, Trans. ASAE 44 (2001) 1429.

P.R. Gogate, A.B. Pandit, Ultrason. Sonochem. 12 (2005) 21

P.R. Gogate, R.K. Tayal, A.B. Pandit, Current Sci. 91 (2006) 35.

J. Ji, W. Jianli, L. Yongchao, Y. Yunliang, X. Zhichao. Ultrason. 44 (2006) e411.

C. Stavarache, M. Vinatoru, R. Nishimura, Y. Maeda, Ultrason, Sonochem.12 (2005) 367.

D.H. Hoang, N.T. Dong, C. Starvarache, Okitsu Kenji, Y. Maeda, R. Nishimura, Energy Conv. Manag. 49 (2008) 276.

H. Han, W. Cao, J. Zhang, Proc. Biochem. 40 (2005) 3148.

A. Demirbas, Energy Conv. Manag. 44 (2003) 2093.

A. Pal, A. Verma, S.S. Kachhwaha, S. Maji, Ren. Energy 35 (2010) 619.

M.A. Kelkar, P.R. Gogate, A.B. Pandit, Ultrason. Sonochem. 15 (2008) 188.

S.V. Ghadge, H. Raheman, Biomass Bioenergy 28 (2005) 601.

A.K. Tiwari, A. Kumar, H. Raheman, Biomass Bioenergy 31 (2007) 569.

G.E. Arzamendi, E. Arguiñarena, I. Campo, S. Zabala, L.M. Gandía, Catal. Today, 133-135 (2008) 305.

N. Omar, N. Nordin, M. Mohamed, S. Amin, J. Appl. Sci. 9 (2009) 3098.

C. Komintarachat, S. Chuepeng, Am. J. Appl. Sci. 7 (2010) 1073.