Vol 13, No 2 (2009) > Articles >

Mechanical properties of ramie fiber reinforced epoxy lamina composite for socket prosthesis

Tresna Soemardi 1 , Widjajalaksmi Kusumaningsih 2 , Agustinus Irawan 1


  1. Departemen Teknik Mesin, Fakultas Teknik, Universitas Indonesia, Depok 16424, Indonesia
  2. Fakultas Kedokteran, Universitas Indonesia, Jakarta 10430, Indonesia



This paper presents an investigation into the application of natural fiber composite especially ramie fiber reinforced epoxy lamina composite for socket prosthesis. The research focuses on the tensile and shear strength from ramie fiber reinforced epoxy lamina composite which will be applied as alternative material for socket prosthesis. The research based on American Society for Testing Material (ASTM) standard D 3039/D 3039M for tensile strength and ASTM D 4255/D 4255M-83 for shear strength. The ramie fiber applied is a fiber continue 100 % Ne14'S with Epoxy Resin Bakelite EPR 174 as matrix and Epoxy Hardener V-140 as hardener. The sample composite test made by hand lay up method. Multiaxial characteristic from ramie fiber reinforced epoxy composite will be compared with ISO standard for plastic/polymer for health application and refers strength of material application at Prosthetics and Orthotics. The analysis was completed with the mode of the failure and the failure criterion observation by using Scanning Electron Microscope (SEM). Based on results of the research could be concluded that ramie fiber reinforced epoxy composite could be developed further as the alternative material for socket prosthesis on Vf 40-50%. Results of the research will be discussed in more detail in this paper.

Keywords: mechanical properties, ramie fiber reinforced epoxy lamina composite, socket prosthesis
Published at: Vol 13, No 2 (2009) pages: 96-101

Access Counter: 3088 views, 3 Untitled downloads, 4960 PDF downloads, .

Full PDF Download


G. Stark, JPO 17/4S (2005) 18-22.

H. van der Linde, J.H. Cheriel, A.C.H. Geurts, JRRD 41/4 (2004) 555-570.

W.C.C. Lee, Z. Ming, A.B. David, C. Bill, JRRD 41/6A. (2004) 775-786.

F. Prince, A.W. David, S. Gary, P. Corrie, K.W. Robyn, JRRD 35/2 (1998) 177-185.

S.L. Phillips, W. Craelius, JPO 17/1 (2005) 27-32.

J.A. Campbell, Engineering Material, Department Engineering, ANU, Canberra, 2002.

F.G. Torres, R.M. Diaz, Polymers & Polymer Composites 12/8 (2004) 705-718

John Craig, JPO 17/4S (2005) 27-49.

H. Ling-Ping, T. Yong, W. Lu-Lin., Advanced Materials Research 41-42 (2008) 313-316.

J.W. Kaczmar, J. Pach, R. Kozlowski, International Polymer Science and Technology 34/6 (2007) T/45–T/50.

J. Biagiotti, D. Puglia, L. Torre, J.M. Kenny, Polymer Composites 25/5 (2004) 470-479.

M. Jacob, B. Francis, S. Thomas, K.T. Varughese, Polimer Composites (2006) 671-680.

S. Panthapulakkal, S. Law, M. Sain, R. Perrinaud, R. Shermet, Composites in Manufacturing 22/4 (2006).

A. Saidah, Tesis Magister Teknik, Departemen Teknik Mesin, Universitas Indonesia, Indonesia, 2004.

D. Yulianto, Tesis Magister Teknik, Departemen Teknik Mesin, Universitas Indonesia, Indonesia, 2004.

K. Diharjo, S.H. Nuri, Prosiding Seminar Nasional Teknik Mesin, Universitas Petra, Surabaya, Indonesia, 2006.

K. Diharjo, Jurnal Teknik Mesin 8/1 April, Universitas Kristen Petra, Surabaya, Indonesia, (2006) 8-13.

ASTM, Annual Book of ASTM Standard, West Conshohocken, 2003.

A.K. Kaw, CRC Press, Boca Raton, New York, 1997.

BS ISO 10328-3: 1996, Prosthetics, Structural Testing of Lower-Limb Prostheses, Principal Structural Tests, http:// www.iso.org.