Vol 22, No 2 (2018) > Industrial Engineering >

Internet Traffic Forecasting Model Using Self Organizing Map and Support Vector Regression Method

Enrico Laoh 1 , Fakhrul Agustriwan 1 , Chyntia Megawati 2 , Isti Surjandari 1


  1. Industrial Engineering Department, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
  2. Department of Integerated System Engineering, College of Engineering, Ohio State University, Columbus, OH 43210, USA


Abstract: Internet traffic forecasting is one of important aspect in order to fulfill the customer demand. So, the service quality of internet service provider (ISP) can be maintained at the good level. In this study self organizing map (SOM) and support vector regression (SVR) algorithm are used as forecasting method. SOM is first used to decompose the whole historical data of traffic internet into clusters, while SVR is used to build a forecasting model in each cluster. This method is used to forecast ISPs traffic internet in Jakarta and surrounding areas. The result of this study shows that SOM-SVR method gives more accurate result with smaller error value compared to that of the SVR method.
Keywords: forecasting, internet traffic, self organizing map, support vector regression
Published at: Vol 22, No 2 (2018) pages: 60-65

Access Counter: 453 views, 0 Untitled downloads, 0 Untitled downloads, 392 PDF downloads, .

Full PDF Download


A. Hardiansyah, S.I. Lestarininganti, T.N. Nizar, Universitas Komputer Indonesia, Bandung, 2013. [In Indonesian]

3G Americas, Traffic Management Technique for Mobile Broadband Network, 3G Americas, Washington DC, 2011.

H. Abrahamsson, Internet Traffic Management, Malardalen University Press, Vasteras, 2008.

G.R. Ash, Traffic Engineering and QoS Optimization of Integrated Voice & Data Networks, Morgan Kaufmann, San Fransisco, 2006.

K. Papagiannaki, N. Taft, Z.L. Zhang, C. Diot, IEEE Trans. Neural Netw. 16 (2005) 1110.

D. Prangchumpol, Int. Schol. Sci. Res. Innovation. 7/7 (2013) 1141.

M. Lippi, M. Bertini, P. Frasconi, IEEE Trans. Intell. Transp. Syst. 14 (2012) 871.

P. Bermolen, D. Rossi, Computer Network. 53 (2009) 191.

X. Liu, X. Fang, Z. Qin, C. Ye, M Xie, J. Netw. Syst. Manag. 19/4 (2011) 427.

C.W. Hsu, C.C. Chang, C.J. Lin. A Practical Guide to Support Vector Classification, Department of Computer Science, 2003. Available at: http://www. csie.ntu.edu.tw/~cjlin/papers/ guide/guide.pdf.

T. Kohonen, Self-organizing Maps, Springer, New York, 2011.

S.H. Hsu, J.P.A. Hsieh, T.C. Chih, K.C. Hsu, Expert Syst. Appl. 36 (2009) 7947.

C.L. Huang, C.Y. Tsai, Expert Syst. Appl. 36 (2009) 1529.

J. Nagi, K.S. Yap, S.K. Tiong, S.K. Ahmed, The 2nd International Power Engineering and Optimization Conference, Shah Alam, Selangor, Malaysia, 2008.

V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

R. Jacobs, M. Jordan, S. Nowlan, G. Hinton, Neural Comput. 3 (1991) 79.

E. Alpaydin, Introduction to Machine Learning, MIT Press, Cambridge, 2004.

R.F. de Brito, A.L. Olivera, IEEE World Congress on Computational Intelligence, Brisbane, QLD, Australia., 2012, pp.1-7.

H. Feng, Y. Shu, S. Wang, M. Ma, Proceedings of the IEEE International Conference on Communications, Istanbul, Turkey, 2006, pp. 597-602.

J. He, Rethinking Traffic Management: Design of Optimizable Networks, Princeton University, New Jersey, 2008.

J. He, J. Rexford, M. Chiang, Algorithms for Next Generation Networks, 2010, pp.18.

N.V. Kalyankar, Network Traffic Management, J. Comput. 1/1 (2009) 191.

R. Kohavi, F. Provost, Glossary of Terms: Machine Learning, Kluwer Academic, Boston, 1998.