Vol 18, No 1 (2014) > Electrical and Electronics Engineering >

Performances of Free-Space Optical Communication System Over Strong Turbulence

Ucuk Darusalam 1 , Purnomo Sidi Priambodo 1 , Harry Sudibyo 1 , Eko Tjipto Rahardjo 1

Affiliations:

  1. Study Program of Opto-Electrotechnique & Laser Application, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16425, Indonesia

 

Abstract: We report an experimental of free-space optical communication (FSOC) system that use tube propagation simulator (TPS) as the turbulence medium. The FSOC system usewavelength of 1550 nm at the rate transmission of 1000 Mbps and amplified with EDFA at the output of +23 dBm. Index structure of 10-15–10-13 as the representation of atmosphere index turbulences are used for simulation of intensity distribution model or scintillation. The simulation use gammagamma and K model as well. The beam wave propagation models used in simulation are plane wave, spherical wave and Gaussian wave. Spherical wave achieves highest performance via gamma-gamma in strong turbulence. While Gaussian wave achieves highest performance also via K model. We also found, characteristical FSOC system performance is calculated more accurately with gamma-gamma method for strong turbulence than K model. The performances from gamma-gamma for strong turbulenceare at 22.55 dB, at 5.33×10-4, and at 9.41 ×10-6. 
Keywords: free-space optical communication (FSOC) system, scintillation, turbulence media, <SNR>, <BER>, <Prfade>
Published at: Vol 18, No 1 (2014) pages: 17-23
DOI:

Access Counter: 1780 views, 1429 PDF downloads, .

Full PDF Download

References:

X. Zhu, J.M. Kahn, IEEE Trans. Commun. 50/8 (2002) 1293.

V.W.S. Chan, J. Lightwave Technol. 24/12 (2006) 4750.

Z. Hajjarian, J. Fadlullah, J. Commun. 4/8 (2009) 524.

M. Abtahi, P. Lemieux, W. Mathlouthi, L.A. Rusch, J. Lightwave Technol. 24/12 (2006) 4966.

H. Li-qiang, W. Qi, S. Katsunori, WASE International Conference on Information Engineering, China, 2010, p.127.

Y.-S. Hurh, K. Shin, S. Lee, J. Lee, J. Lightwave Technol. 23/12 (2005) 4022.

X. Ma, L. Liu, B. Tu, X. Zhang, J. Tang, J. Lightwave Technol. 28/24 (2010) 3582.

A. Bekkali, C.B. Naila, K. Kazaura, K. Wakamori, M. Matsumoto, IEEE Photonics J. 2/3 (2010) 510.

H.E. Niztazakis, T.A. Tsiftsis, G.S. Tombras, IET Comm. 3/8 (2009) 1402.

X. Zhu, J.M. Kahn, IEEE Trans. Commun. 51/3 (2003) 509.

C. Reindhart, Y. Kuga, S. Jaruwatanadilok, A. Ishimaru, IEEE J. Selected Areas in Comm. 27/9 (2009) 1591.

P. Latsa-Babu, B. Srinivasan, IEEE Trans. Comm. 58/6 (2010) 1.

L.C. Andrews, R.L. Philips, 2nd ed., SPIE Press, Washington, USA, 2005, p.820.

W. Gappmair, M. Flohberger, IEEE Trans. Wireless. Comm. 8/5 (2009) 2209.

Eunju Lee, Giwan Yoon, IEEE Photon. Tech. Lett. 23/4 (2011) 269.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, H.L. Minh, IEEE Comm. Lett. 16/3 (2012) 408.

E. Bayaki, R. Schober, R.K. Mallik, IEEE Trans. 57/11 (2009) 3415.

H. Samimi, J. IET Optoelectron. 6/1 (2012) 1.

M. Niu, J. Cheng, J.F. Holzman, Proc. of WCNC, Sydney, NSW, 2010.

K. Kiasaleh, A.V. Bagrov, V.P. Lukin, C. Shen, F. Chen, X. Yu, IEEE Trans. Comm. 54/4 (2006) 604.