Vol 23, No 2 (2019) > Mini Conference >

A Study of the Electron Regeneration Efficiency of Solar Cells Fabricated Using CMC/PVA-, Alginate-, and Xanthan-based Electrolytes

Nur Farha Shaafi 1 , Saifful Kamaluddin Muzakir 1 , Bouchta Sahraoui 2


  1. Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Kuantan, Pahang, Malaysia
  2. University of Angers, UFR Sciences, Institute of Sciences and Molecular Technologies of Angers MOLTECH Anjou-UMR CNRS 6200, 2 Bd Lavoisier 49045 ANGERS Cedex 2, France


Abstract: The efficient electron regeneration is achieved as the energy level requirement of LUMO QDs > redox potential of electrolyte > HOMOfluorophore. A continuous process of a photovoltaic mechanism is achieved upon replenishment of an electron vacancy in the HOMOfluorophore. The objective of the study is to generate an efficient electron generation solar cell in comparing the compatibility of redox potential of three different polymer-based electrolytes i.e., (i) 60% carboxymethyl cellulose (CMC) blended with 40% polyvinyl alcohol (PVA), (ii) alginate and (iii) xanthan. The redox potentials (Eo) were calculated by quantum chemical calculations under the framework of density functional theory (DFT). The compatibility analysis was carried out pertaining on the energy level alignment between HOMOfluorophore, and Eo of electrolytes. The resulting redox potential calculation of electrolytes i.e., (i) CMC/PVA is -3.144 eV, (ii) xanthan is -1.605 eV and (iii) alginate is -1.908 eV respectively. The power conversion efficiency obtained on CMC/PVA solar cell reached about 1.39% under one-sun illumination; showed higher than that of the alginate and xanthan electrolytes. The calculated Eo of electrolytes were incompatible to be paired with HOMOfluorophore with HOMO energy level is -4.000 eV. The low power conversion efficiency of the CMC/PVA, alginate and xanthan electrolytes nonetheless is hypothesized due to the energy loss during the electron injection from Eo of electrolytes to the HOMOfluorophore which is equivalent to 1.956 eV, 3.192 eV and 3.495 eV respectively.
Keywords: alginate, cmc/pva, dft, efficient electron regeneration, redox potential, xanthan
Published at: Vol 23, No 2 (2019) pages: 53-58

Access Counter: 56 views, 52 PDF downloads, .

Full PDF Download


D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, J. Nanomater. 2018 (2018) 1.

N.A. Chuchvaga, D.V. Zhilina, S.R. Zhantuarov, S.Z. Tokmoldin, E.I. Terukov, J. Phys.: Conf. Ser. 993/1 (2018) 012039.

A.A. Baloch, S.P. Aly, M.I. Hossain, F. ElMellouhi, N. Tabet, F.H. Alharbi, Scientific Reports. 7/1 (2017) 11984.

S. Bernacchi, Y. Mély, Nucleic Acids Res. 13 (2000) 29.

W. Feng, A.S. Wan, E. Garfunkel, J. Phys. Chem. C. 19 (2003) 117.

W. Feng, S. Rangan, Y. Cao, E. Galoppini, R.A. Bartynski, E. Garfunkel, J. Mater. Chem. 19 (2014) 2.

D.P. Hagberg, T. Marinado, K.M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, L. Sun, J. Org. Chem. 25 (2007) 72.

H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 8 (1999) 11.

P. Gu, D. Yang, X. Zhu, H. Sun, P. Wangyang, J. Li, H. Tian, AIP Advances. 7/10 (2017) 105219.

M. Uudsemaa, T. Tamm, J. Phys. Chem. A. 46 (2003) 107.

L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 14 (2011) 13.

L. Yan, Y. Lu, X. Li, Phys. Chem. Chem. Phys. 7 (2016) 18.

Y.O. Iwaki, M.H. Escalona, Briones, A. Pawlicka, Mol. Cryst. Liq. Cryst. 554 (2012) 221.

F.C. Tavares, D.S. Dörr, A. Pawlicka, C. Oropesa Avellaneda, J. App. Polym. Sci. 135 (2018) 46229.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, R.A. 1, Gaussian. Inc., Wallingford CT. 121 (2009) 150.

M.H. Baik, R.A. Friesner, J. Phys. Chem. A. 32 (2002) 106.

L.E. Roy, E. Jakubikova, M.G. Guthrie, E.R. Batista, J. Phys. Chem. A. 24 (2009) 113.

S. Rajamani, T. Ghosh, S. Garde, J. Chem. Phys. 9 (2004) 120.

M.T. McDonnell, D.A. Greeley, K.M. Kit, & D.J. Keffer. J. Phys. Chem. B. 34 (2016) 120.

S.K. Muzakir, Malaysia University Conference Engineering Technology, 2014. p. 79.

M.Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B. 16 (2002) 65.

M. Liu, S.M. Han, X.W. Zheng, L.L. Han, T. Liu, Z.Y. Yu, Int. J. Electrochem. Sci. Belgrade. 10 (2015) 235.

K. Arumugam, U. Becker, Miner. 4 (2014) 345.

Z. Zhang, Y. Yu, P. Wang, ACS Appl. Mater. Interfaces. 4 (2002) 990. [25] S.K. Kim, P. Ho, J.W. Lee, S.Y. Jeon, S. Thogiti, R. Cheruku, J.H. Kim, Mol. Cryst. Liq. Cryst. 1 (2017) 653.

P. Peljo, H.H. Girault, Energy Environ. Sci. 11 (2018) 2306.

S. K. Muzakir, N. Alias, M.M. Yusoff, R. Jose, Phys. Chem. Chem. Phys. 15 (2013) 16275.

J. N. D. Freitas, A. F. Nogueira, M. A. Paoli, J. Mater. Chem. 19 (2009) 5279.

J. Y. Kim, T. H. Kim, D. Y. Kim, N.G. Park, K.D. Ahn, Power Sources 175 (2008) 692.

L. Jin, Z. Wu, T. Wei, J. Zhai, X. Zhang, Chem. Commun. 47 (2011) 997. [31] Y. Wang, Sol. Energy Mater. Sol. Cells, 93 (2009) 1167.

M.A. Saadiah, A.S. Samsudin, IOP Conf. Ser.: Mater. Sci. Eng. IOP Publishing. 342/1 (2018) 012045.

H. Pujiarti, W.S. Arsyad, L. Muliani, R. Hidayat, J. Phys.: Conf. Ser. IOP Publishing. 1011/1 (2018) 012020.