Vol 22, No 3 (2018) > MJT Intl Meeting on Collaborative Technologies >

A 2.3/3.3-GHz Dual Band Low Noise Amplifier Using Switchable Load Inductor in 0.18-um CMOS Technology

Taufiq Alif Kurniawan 1 , Hsiao-Chin Chen 2

Affiliations:

  1. Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
  2. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

 

Abstract: In this paper, the dual band low noise amplifier is designed in 0.18-μm CMOS technology. By combining the proposed switchable load inductor for gain controlling and the conventional inductive source degeneration topology, narrow band gain and good impedance matching are achieved at 2.3/3.3-GHz frequency bands. The new mathematical analysis of low noise amplifier design is derived to define the component parameters of the proposed circuits. The proposed low noise amplifier exhibits gain of 17.18 dB and 15.5 dB, and noise figure of 2.67 dB and 2.52 dB at the two frequency bands, respectively.
Keywords: dual band LNA, switchable load inductor, inductive source degeneration, 0.18-um CMOS Technology
Published at: Vol 22, No 3 (2018) pages: 159-166
DOI:

Access Counter: 24 views, 21 PDF downloads, .

Full PDF Download

References:

H. Zhang, J. Li, B. Wen, Y. Xun, J. Liu, IEEE Internet. Things J. 5/3 (2018) 1550.

M. Heinrichs, N. Bark, R. Kronberger, IEEE Microw. Mag. 19/2 (2018) 77.

G. Wibisono, T. Firmansyah, P.S. Priambodo, A.S. Tamsir, T.A. Kurniawan, A.B. Fathoni, Int. J. Tech. 5/1 (2014) 32.

T.A. Kurniawan, G. Wibisono, 2013 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), Yogyakarta, Indonesia, 2013.

Y.H. Wang, K.T. Lin, T. Wang, H.W. Chiu, H.C. Chen, S.S. Lu, IEEE Microw. Wirel. Compon. Lett. 20/6 (2010) 346.

Y. Lu, K.S. Yeo, A. Cabuk, J. Ma, M.A. Do, Z.H. Lu, IEEE Trans. Circuits Syst. Reg. Pap. 53/8 (2006) 1683.

K.R. Mao, J. Wilson, M. Ismail, IEEE Microw. Wirel. Compon. Lett. 15/5 (2005) 321.

V.K. Dao, B.G. Choi, C.S. Park, IEEE Radio and Wireless Symp., California, USA, 2007, p.145.

Z. Li, R. Quintal, K.O. Kenneth, IEEE J. Solid-State Circuits. 39/11 (2004) 2069.

H. Hashemi, A. Hajimiri, IEEE Trans. Microw. Theory Tech. 50/1 (2002) 288.

D.K. Shaeffer, T.H. Lee, IEEE J. Solid-State Circuits. 32/5 (1997) 745.

T. Wang, H.C. Chen, H.W. Chiu, Y.S. Lin, G.W. Huang, S.S. Lu, IEEE Trans. Microw. Theory Tech. 54/2 (2006) 580.

T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.

A.J. Scholten, L.F. Tiemeijer, R.V. Langevelde, R.J. Havens, A.T.A.Z. Duijnhoven, V.C. Venezia, IEEE Trans. Electron Devices. 50/3(2003) 618.

J.H. Tsai, W.C. Chen, T.P. Wang, T.W. Huang, H. Wang, IEEE Microw. Wirel. Compon. Lett. 6/6 (2006) 327.

A.V.D. Ziel, Noise in Solid State Devices and Circuits. Wiley, New York, 1986.

B. Razavi, RF Microelectronics, Prentice Hall ptr, Upper Saddle River NJ, 1998.

C.W. Kim, M.S. Kang, P.T. Anh, H.T. Kim, S.G. Lee, IEEE J. Solid-State Circuits. 40/2 (2005) 544.

K. Han, J. Gil, S.S. Song, J. Han, H. Shin, C.K. Kim, K. Lee, IEEE J. Solid-State Circuits. 40/3 (2005) 726.

A.J. Scholten, L.F. Tiemeijer, R.V. Langevelde, R. J. Havens, A.T.A.Z. Duijnhoven, V.C. Venezia, IEEE Trans. Electron Devices. 50/3 (2003) 618.

T.K. Nguyen, S.K. Han, S.G. Lee, Electron. Lett. 41/15 (2005) 842.

F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, R. Castello, IEEE J. Solid-State Circuits. 36/10 (2001) 94.

C. Xin, E.S. Sinencio, IEEE Microw. Wirel. Compon. Lett. 15/2 (2005) 68.

S.B.T. Wang, A.M. Niknejad, R.W. Brodersen, IEEE J. Solid-State Circuits. 41/11 (2006) 2449.