Vol 23, No 1 (2019) > Mechanical Engineering >

Sorption-based Energy Storage Systems: A Review

Kyaw Thu 1 , Nasruddin Nasruddin 2 , Sourav Mitra 3 , Bidyut Baran Saha 4


  1. Green Asia Education Center, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan
  2. Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
  3. Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721302, India
  4. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan


Abstract: Mismatch timing between supply and demand calls for energy storage systems. Energy storage systems become further substantial with the widespread implementation of renewable energy. These systems can mitigate problems such as supply unreliability and meeting demand during peak hours that are often associated with renewable energy sources. Energy can be stored in various forms, yet storage systems can be generally grouped based on their output form namely: (i) the electricity and (ii) heat. Electrical energy is the most convenient and effective form since electricity can drive almost all devices. The electricity itself is vastly produced by thermodynamic cycles at a particular thermal efficiency using heat. Meanwhile, thermal energy for HVAC&R and hot water remains the largest portion of the building energy sector. Thermal energy can be stored in the form of sensible, latent and thermochemical. This review focuses on sorption-based energy storage systems which are thermochemical types. These systems exploit endothermic and exothermic sorption processes for charging and discharging of thermal energy. Sorption-based storage systems exhibit huge potential due to high energy density and their ability to store energy at room temperature. We discussed the state-of-the-art, current development, key challenges and future aspects of sorption-based energy systems.
Keywords: energy storage, thermochemical, renewable energy, adsorption, Porous media
Published at: Vol 23, No 1 (2019) pages: 16-26

Access Counter: 315 views, 221 PDF downloads, .

Full PDF Download


M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermody-namics, 7th ed., Wiley, New York, 2010, p.1024. https://books.google.co.jp/books?id=oyt8iW6B4aUC.

Renewable Energy Sources - Energy Explained, Your Guide To Understanding Energy - Energy In-formation Administration, (n.d.). https://www.eia. gov/energyexplained/?page=renewable_home (accessed October 19, 2018).

M.S. Whittingham, Science 192 (1976) 1126 LP-1127. http://science.sciencemag.org/content/192/ 4244/1126.abstract.

B. Steffen, Energy Policy. 45 (2012) 420. doi:10.1016/j.enpol.2012.02.052.

Y.-D. Kim, K. Thu, S.-H. Choi, Desalination. 367 (2015) 161. doi:10.1016/j.desal.2015.04.003.

Y.-D. Kim, K. Thu, K.C. Ng, Evergreen. 2 (2015) 50.

K.E. N’Tsoukpoe, H. Liu, N. Le Pierrès, L. Luo, Renew. Sustain. Energy Rev. 13 (2009) 2385. doi:10.1016/j.rser.2009.05.008.

L.B. Hyman, Sustainable thermal storage systems: planning, design, and operations, n.d.

G. Alva, L. Liu, X. Huang, G. Fang, Renew. Sustain. Energy Rev. 68 (2017) 693. doi:10.1016/ j.rser.2016.10.021.

A.L. Reed, A.P. Novelli, K.L. Doran, S. Ge, N. Lu, J.S. McCartney, Renew. Energy. 126 (2018) 1. doi:10.1016/j.renene.2018.03.019.

J.F. Carneiro, C.R. Matos, S. van Gessel, Renew. Sustain. Energy Rev. 99 (2019) 201. doi:10.1016/j.rser.2018.09.036.

K. Xie, Y.-L. Nian, W.-L. Cheng, Energy. 163 (2018) 1006. doi:10.1016/j.energy.2018.08.189.

Y. Jiang, Q. Gao, L. Wang, M. Li, Procedia Envi-ron. Sci. 12 (2012) 659. doi:10.1016/j.proenv. 2012.01.332.

P. Fleuchaus, B. Godschalk, I. Stober, P. Blum, Renew. Sustain. Energy Rev. 94 (2018) 861–876. doi:10.1016/j.rser.2018.06.057.

B. Ugur, Thermal Energy Storage in Adsorbent Beds, Université d’Ottawa/University of Ottawa, 2013. https://ruor.uottawa.ca/bitstream/10393/ 24362/1/Ugur_Burcu_2013_thesis.pdf.

D. Lefebvre, F.H. Tezel, Renew. Sustain. Energy Rev. 67 (2017) 116. doi:10.1016/j.rser.2016. 08.019.

B. Michel, N. Mazet, S. Mauran, D. Stitou, J. Xu, Energy. 47 (2012) 553–563. doi:10.1016/j.energy. 2012.09.029.

Y.I. Aristov, Futur. Cities Environ. 1 (2015) 10. doi:10.1186/s40984-015-0011-x.

A. Hauer, E. L¨avemann, Open Absorption Sys-tems for Air Conditioning and Thermal Energy Storage, in: H.Ö. Paksoy (Ed.), Therm. Energy Storage Sustain. Energy Consum., Springer Nether-lands, Dordrecht, 2007: pp. 429–444. doi:10.1007/978-1-4020-5290-3.

L.F. Cabeza, A. Solé, C. Barreneche, Renew. Ener-gy. 110 (2017) 3–39. doi:10.1016/j.renene. 2016.09.059.

F. Rouquerol, J. Rouquerol, K. Sing, Chapter 1 - Introduction, In: F. Rouquerol, J. Rouquerol, K. Sing (Eds.), Adsorption. by Powders Porous Solids, Academic Press, London, 1999: pp. 1–26. doi: https://doi.org/10.1016/B978-012598920-6/50002-6.

D.M. Ruthven, Principles of adsorption and ad-sorption processes, Wiley, 1984. https://books. google.co.jp/books?id=u7wq21njR3UC.

C. Lehmann, S. Beckert, T. Nonnen, R. Gläser, O. Kolditz, T. Nagel, Water loading lift and heat stor-age density prediction of adsorption heat storage systems using Dubinin-Polanyi theory—Comparison with experimental results, Appl. Ener-gy. 207 (2017) 274. doi:10.1016/j.apenergy.2017.07.008.

C. Lehmann, S. Beckert, R. Gläser, O. Kolditz, T. Nagel, Appl. Energy. 185 (2017) 1965. doi:10.1016/j.apenergy.2015.10.126.

G. Engel, S. Asenbeck, R. Köll, H. Kerskes, W. Wagner, W. van Helden, J. Energy Storage. 13 (2017) 40. doi:10.1016/J.EST.2017.06.001.

K. Lim, J. Che, J. Lee, Appl. Therm. Eng. 110 (2017) 80. doi:10.1016/j.applthermaleng.2016.08.098.

M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Int. J. Heat Mass Transf. 122 (2018) 795. doi:10.1016/j.ijheatmasstransfer.2018.01.107.

B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, N.D. Banker, P. Dutta, M. Prasad, K. Srinivasan, Int. J. Refrig. 29 (2006) 1175. doi:10.1016/j.ijrefrig.2006.01.005.

B.B. Saha, I.I. El-Sharkawy, A. Chakraborty, S. Koyama, K.C. Ng, Study on single-and multi-stage adsorption cooling cycles working at sub and above atmospheric conditions, in: 2008 ASME Int. Mech. Eng. Congr. Expo. IMECE 2008, Bos-ton, MA, 2009: pp. 563–570. doi:10.1115/imece 2008-68616.

Y.I. Aristov, M.M. Tokarev, V.E. Sharonov, Chem. Eng. Sci. 63 (2008) 2907. doi:10.1016/ j.ces.2008.03.011.

R.E. Critoph, Sol. Energy. 41 (1988) 21. http: //www.scopus.com/inward/record.url?eid=2-s2.0-0023863493&partnerID=40&md5=5033b491f06746306cc9a6cba24b9a68.

M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Int. J. Heat Mass Transf. 122 (2018) 795. doi:10.1016/j.ijheatmasstransfer.2018.01.107.

A. Hauer, Sorption theory for thermal energy stor-age, in: Therm. Energy Storage Sustain. Energy Consum., Springer Netherlands, Dordrecht, 2007: pp. 393–408. doi:10.1007/978-1-4020-5290-3_24.

A. Hauer, Evaluation of adsorbent materials for heat pump and thermal energy storage applica-tions in open systems, in: Adsorption, 2007: pp. 399–405. doi:10.1007/s10450-007-9054-0.

S.P. Casey, D. Aydin, S. Riffat, J. Elvins, Energy Build. 92 (2015) 128. doi:10.1016/j.enbuild. 2015.01.048.

H. Deshmukh, M.P. Maiya, S. Srinivasa Murthy, Appl. Therm. Eng. 111 (2017) 1640. doi:10.1016/ j.applthermaleng.2016.07.069.

H. Zondag, B. Kikkert, S. Smeding, R. de Boer, M. Bakker, Appl. Energy. 109 (2013) 360. doi:10.1016/j.apenergy.2013.01.082.

B. Mette, H. Kerskes, H. Drück, H. Müller-Steinhagen, Appl. Energy. 109 (2013) 352. doi:10.1016/j.apenergy.2013.01.087.

S. Maeda, K. Thu, T. Maruyama, T. Miyazaki, S. Maeda, K. Thu, T. Maruyama, T. Miyazaki, Appl. Sci. 8 (2018) 2061. doi:10.3390/APP8112061.

K. Thu, Y.-D. Kim, A. Bin Ismil, B.B. Saha, K.C. Ng, Appl. Therm. Eng. 72 (2014) 200. doi:10.1016/j.applthermaleng.2014.04.076.

K. Thu, N. Takeda, T. Miyazaki, B.B. Saha, S. Koyama, T. Maruyama, S. Maeda, T. Kawamata, Int. J. Refrig. (2018) In Press. doi:10.1016/ j.ijrefrig. 2018.06.009.

M. Ghazy, K. Harby, A.A. Askalany, B.B. Saha, Int. J. Refrig. 70 (2016) 196. doi:10.1016/j.ijrefrig. 2016.01.012.

S. Jribi, T. Miyazaki, B.B. Saha, A. Pal, M.M. Younes, S. Koyama, A. Maalej, Int. J. Heat Mass Transf. 108 (2017) 1941. doi:10.1016/ j.ijheatmasstransfer.2016.12.114.

W.S. Loh, K.A. Rahman, A. Chakraborty, B.B. Saha, Y.S. Choo, B.C. Khoo, K.C. Ng, J. Chem. Eng. Data. 55 (2010) 2840. doi:10.1021/je901011c.

A. Bin Ismail, A. Li, K. Thu, K.C. Ng, W. Chun, Appl. Therm. Eng. 67 (2014) 106. doi:10.1016/j.applthermaleng.2014.02.063.

A. Chakraborty, K.C. Leong, K. Thu, B.B. Saha, K.C. Ng, Appl. Phys. Lett. 98 (2011) 221910. doi:10.1063/1.3592260.

A. Frazzica, Renew. Energy. 110 (2017) 87–94. doi:10.1016/J.RENENE.2016.09.047.

F.H.M. Azahar, S. Mitra, A. Yabushita, A. Harata, B.B. Saha, K. Thu, Appl. Therm. Eng. 143 (2018) 688. doi:10.1016/j.applthermaleng.2018. 07.131.

M.S. Fernandes, G.J.V.N. Brites, J.J. Costa, A.R. Gaspar, V.A.F. Costa, Energy. 102 (2016) 83. doi:10.1016/j.energy.2016.02.014.

D. Dicaire, F.H. Tezel, Int. J. Energy Res. 37 (2013) 1059. doi:10.1002/er.2913.

H. Liu, K. Nagano, Int. J. Heat Mass Transf. 78 (2014) 648. doi:10.1016/j.ijheatmasstrans fer. 2014.07.034.

H. Wu, S. Wang, D. Zhu, Y. Ding, Int. J. Heat Mass Transf. 52 (2009) 5262. doi:10.1016/ j.ijheatmasstransfer.2009.05.016.

T. Nagel, S. Beckert, C. Lehmann, R. Gläser, O. Kolditz, Appl. Energy. 178 (2016) 323. doi:10.1016/j.apenergy.2016.06.051.

P. Gantenbein, S. Brunold, F. Flückiger, U. Frei, Sorbtion materials for application in solar heat en-ergy storage, 2001. http://www.solarenergy.ch/ fileadmin/daten/publ/sorption01.pdf (accessed October 19, 2018).

S.P. Casey, D. Aydin, J. Elvins, S. Riffat, Energy Convers. Manag. 142 (2017) 426. doi:10.1016/ j.enconman.2017.03.066.

K. Johannes, F. Kuznik, J.-L. Hubert, F. Durier, C. Obrecht, Appl. Energy. 159 (2015) 80. doi:10.1016/ j.apenergy.2015.08.109.

P. Tatsidjodoung, N. Le Pierrès, J. Heintz, D. Lagre, L. Luo, F. Durier, Energy Convers. Manag. 108 (2016) 488. doi:10.1016/j.enconman.2015. 11.011.

D. Zhu, H. Wu, S. Wang, Int. J. Therm. Sci. 45 (2006) 804. doi:10.1016/j.ijthermalsci.2005.10.009.

R. van Alebeek, L. Scapino, M.A.J.M. Beving, M. Gaeini, C.C.M. Rindt, H.A. Zondag, Appl. Therm. Eng. 139 (2018) 325. doi:10.1016/j.applther maleng.2018.04.092.

Y.N. Zhang, R.Z. Wang, T.X. Li, Energy. 141 (2017) 2421. doi:10.1016/j.energy.2017.12.003.

M. Gaeini, M.R. Javed, H. Ouwerkerk, H.A. Zondag, C.C.M. Rindt, Energy Procedia. 135 (2017) 105. doi:10.1016/j.egypro.2017.09.491.

M. Gaeini, H.A. Zondag, C.C.M. Rindt, Appl. Therm. Eng. 102 (2016) 520. doi:10.1016/j.appl thermaleng.2016.03.055.

M. Gaeini, R. Wind, P.A.J. Donkers, H.A. Zondag, C.C.M. Rindt, Int. J. Heat Mass Transf. 113 (2017) 1116. doi:10.1016/j.ijheatmasstransfer.2017.06.034.

S. Mitra, M. Muttakin, K. Thu, B.B. Saha, Appl. Therm. Eng. 133 (2018) 764. doi:10.1016/ j.applthermaleng.2018.01.015.

S. Jribi, T. Miyazaki, B.B. Saha, S. Koyama, S. Maeda, T. Maruyama, Int. J. Refrig. 74 (2017) 345. doi:https://doi.org/10.1016/j.ijrefrig.2016.10.019.

S. Ergun, A.A. Orning, Ind. Eng. Chem. 41 (1949) 1179. doi:10.1021/ie50474a011.

D. Lefebvre, P. Amyot, B. Ugur, F.H. Tezel, Ind. Eng. Chem. Res. 55 (2016) 4760. doi:10.1021/ acs.iecr.5b04767.

Y.-D.D. Kim, K. Thu, N. Ghaffour, K. Choon Ng, J. Memb. Sci. 427 (2013) 345. doi:10.1016/ j.memsci.2012.10.008.

Y.-D. Kim, K. Thu, H.K. Bhatia, C.S. Bhatia, K.C. Ng, Sol. Energy. 86 (2012) 1378. doi:10.1016/ j.solener.2012.01.030.

K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Desalination. 308 (2013) 161. doi:10.1016/ j.desal.2012.07.030.

M.S. Fernandes, G.J.V.N. Brites, J.J. Costa, A.R. Gaspar, V.A.F. Costa, Energy Convers. Manag. 126 (2016) 548. doi:10.1016/j.enconman.2016. 08.032.

M. Duquesne, J. Toutain, A. Sempey, S. Ginestet, E. Palomo del Barrio, Appl. Therm. Eng. 71 (2014) 469. doi:10.1016/j.applthermaleng.2014. 07.00.

B. Dawoud, E.-H. Amer, D.-M. Gross, Int. J. Ener-gy Res. 31 (2007) 135. doi:10.1002/er.1235.

H. Schreiber, F. Lanzerath, C. Reinert, C. Grüntgens, A. Bardow, Appl. Therm. Eng. 106 (2016) 981. doi:10.1016/j.applthermaleng.2016.06.05.

H. Schreiber, F. Lanzerath, A. Bardow, Appl. Therm. Eng. 141 (2018) 548. doi:10.1016/ j.applthermaleng.2018.05.09.