Vol 24, No 2 (2020) > MJT Intl Meeting on Collaborative Technologies >

Effect of PVDF-CA Ratio on Electrospun Membrane for Water–Oil Filtration Application

Mohamad Haziq Alias 1 , Izan Izwan Misnon 1 , Rajan Jose 1


  1. Nanostructured Renewable Energy Materials Laboratory, Universiti Malaysia Pahang, Pahang 26300, Malaysia


Abstract: Oil spillage and generation of industrial water-oil wastewater mixture ignite a focus in filtration technology. Electrospinning technique provides a versatile route in producing tunable diameter and pores in nanofibers filtration membrane development. In this work, the polyvinylidene difluoride (PVDF) and cellulose acetate (CA) composite electrospun membrane at different ratios are synthesized for water-oil filtration application. The polymeric solutions were characterized using viscometer and conductivity testing, whereas the membranes are analyzed using contact angle, tensile test, SEM and filtration testing of oil (dichloromethane, DCM). Conductivity test showed a decrease in conductivity along with decrement of CA ratio in the polymeric solution. The viscosity results showed a rising trend along with the increment of CA in the polymeric solution along with the decrement of PVDF ratio. SEM result showed that all membranes having a fiber diameter ranged from 210  485 nm and pore size ranged from 235 – 856 nm. The tensile test showed a trend of decreasing in tensile strength as the ratio of PVDF in the electrospun membrane decreased. The membrane with PVDF to CA ratio of 90:10 showed optimum performance for water-oil filtration with flux of 14111 Lm-2h-1 and oil recovery of 94%.
Keywords: electrospinning, cellulose acetate, PVDF, filtration technology
Published at: Vol 24, No 2 (2020) pages: 87-92

Access Counter: 111 views, 72 PDF downloads, .

Full PDF Download


B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, J. Mater. Chem. A, 2/18 (2014) 6578.

N. Bhardwaj, S.C. Kundu, Biotechnol. Adv. 28/3 (2010) 325.

K. Kamarudin, Tragedi Pencemaran Pasir Gudang, Sinar Harian, https://www.sinarharian.com.my/ article/35995/SISIPAN/Trend/Tragedi-pencemaran -di-Pasir-Gudang, 2019.

B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, Alexandria Eng. J. 55/3 (2016) 2975.

D.G. Yu, X.Y. Li, X. Wang, W. Chian, Y.Z. Liao, Y. Li, Cell. 20/1 (2013) 379.

S.Z. Abdullah, P.R. Bérubé, Water Res. 47/14 (2013) 5392.

M.H. Razzaghi, A. Safekordi, M. Tavakolmoghadam, F. Rekabdar, M. Hemmati, J. Membr. Sci. 470 (2014) 547.

G. Qin, et al. Sep. Purif. Technol. 177/Supplement C (2017) 129.

D. Wu, Z. Xiao, K.S. Teh, Z. Han, G. Luo, C. Shi, L. Lin, J. Phys. D-Appl. Phys. 49/36 (2016) 365302.

H. Wang, R. Wang, L. Sun, Z. Liu, Y. Zhu, RSC Adv. 6/51 (2016) 45636.

M.V. Bhute, S.B. Kondawar, Solid State Ionics. 333(2019) 38.

K.J. Lu, J. Zuo, T.S. Chung, J. Membr. Sci. 514 (2016) 165.

X. Wang, W. Cheng, D. Wang, X. Ni, G. Han, J. Membr. Sci. 575 (2019) 71.

M. Amjad, A. Qamar, M. Asim, M. Farooq, G. Raza, Tech. J. 22/1 (2017) 61.

H.H. Al-Kayiem, J.A. Khan, Energy Fuels. 31/9 (2017) 9290.

A.M. Gañán-Calvo, N. Rebollo-Muñoz, J.M. Montanero, New J. Phys. 15/3 (2013) 033035.

W. Kang, X. Ma, H. Zhao, J. Ju, Y. Zhao, J. Yan, B. Cheng, J. Solid State Electrochem. 20/10 (2016) 2791.

M.H. Alias, N.S. Hassin, P.P. Lau, I.I. Misnon, R. Jose, Mater. Sci. Forum. 981 (2020) 356.