Vol 24, No 1 (2020) > Chemical Engineering >

Synthesis of Epoxy Monoethanolamide from Bauhinia monandra Seed Oil

Adewale Adewuyi 1 , Rotimi A. Oderinde 1


  1. Industrial Unit, Department of Chemistry, University of Ibadan, Ibadan, Oyo State 200284, Nigeria


Abstract: Epoxidised monoethanolamide (EMA) was synthesized from Bauhinia monandra seed oil (BMO) via simple reaction route. BMO was transesterified to obtain mixture of methyl esters, which was subjected to urea adduct complexation reaction. The unsaturated methyl esters (BME) from the urea adduct complexation reaction was epoxidised using performic acid produced in-situ in a one pot reaction system. The epoxidised methyl esters (EBB) were converted to EMA by reacting it with monoethanolamine (1:10). The progress of the reaction was monitored using Fourier Transform Infrared (FTIR) spectroscopy and Proton Nuclear Magnetic Resonance (1HNMR) spectroscopy while the fatty acid composition was confirmed using Gas Chromatography (GC). The most abundant fatty acid in BMO was C18:1 (25.70 ± 0.20 %) with an unsaturation value of 49.00 ± 0.50 %; after the urea adduct complexation reaction, the unsaturation increased to 95.20 ± 0.10 % with C18:2 (75.00 ± 0.10 %) becoming the most dominant fatty acid. The oxirane oxygen content was found to be 5.50 ± 0.50 %. The results of this study have revealed urea adduct complexation reaction as a potential means of increasing the unsaturation of fatty methyl esters. This has also shown that EMA can be produced at low or room temperature.
Keywords: Bauhinia monandra, epoxidation, epoxy monoethanolamide, fatty acids, urea adduct complexation reaction
Published at: Vol 24, No 1 (2020) pages: 18-24

Access Counter: 116 views, 60 PDF downloads, .

Full PDF Download


G.C. Gervasio, Fatty acids and derivatives from Coconut Oil, in Bailey’s Industrial Oil and Fat Products, 5th ed., vol 5, edited by Y.H. Hui, Wiley Interscience, NY, 1996, p. 33.

U. Biermann, U. Bornscheuer, M.A.R. Meier, J.O. Metzger, H.J. Schfer, Angew. Chem. Int. Ed. 50 (2011) 3854.

M.J. Rosen, J.T. Kunjappu, Surfactants and Interfacial Phenomena, 4th ed. John Wiley & Sons, Hoboken, New Jersey, 2012.

A. Adewuyi, A. Göpfert, T. Wolff, Ind. Crops Prod. 52 (2014) 439.

R. Azarmi, A. Ashjaran, J. Chem. Pharm. Res. 7 (2015) 632.

H. Kolanciliar, Ibid. 81 (2004) 597.

H.S. Rho, H.S. Baek, D.H. Kim, I.S. Chang, Bull. Korean Chem. Soc. 27 (2006) 584.

A.Y. Mudiyanselage, H. Yao, S. Viamajala, S. Varanasi, K. Yamamoto, Ind. Eng. Chem. Res. 54 (2015) 4060.

M.T. Renita Manurung, A.S. Rakhmat, T.S. Rahmad, IJIRSET. 2 (2013) 4205.

R. Marchant, I.M. Banat, Biotechnol. Lett. 34 (2012) 1597.

I.M. Banat, S.K. Satpute, S.S. Cameotra, R. Patil, N.V. Nyayanit, Front Microbiol. 5 (2014) 697.

K.H. Badri, Z. Othaman, S.H. Ahmad, J. Mat. Sci. 39 (2004) 5541.

A. Adewuyi, R.A. Oderinde, Int. J. Food Prop. 16 (2013) 634.

A.B. Fadhil, M.M. Dheyab, A.Y. Abdul-Qader, J. Assoc. Arab Univ. Basic Appl. Sci. 11 (2012) 45.

W.W. Christie, Lipid analysis, 2nd edn. Pergamoon press, Oxford, 1982, p.90.

A. Adewuyi, R.A. Oderinde, B.V.S.K. Rao, R.B.N. Prasad, M. Nalla, Chem. Cent. J. 5 (2011) 79.

AOAC, Official method of analysis of AOAC International, 14th ed, vol.67 Arlington, Virginia, USA, 1984, p.503.

AOCS, Official Methods of Analysis, Cd 9-57, American Oil Chemists’ Society, 1997.

A. Adewuyi, R.A. Oderinde, La Riv. Ita. Delle Sos. Grasse. LXXXVIII (2011) 89.

E. Reyes-Dorantes, J. Zuñiga-Díaz, A. QuintoHernandez, J. Porcayo-Calderon, J.G. GonzalezRodriguez, L. Martinez-Gomez, J. Chem. 2017 (2017) 1.

B.M. Folmer, K. Holmberg, E.G. Klingskog, K. Bergstrom, J. Surfact. Deterg. 4 (2001) 175.

T. Tremblay, C. St-Georges, M.A. Legault, C. Morin, S. Fortin, E. Marsault, Bioorg. Med. Chem. Let. 24 (2014) 5635.