Vol 23, No 3 (2019) > Material and Metalurgical Engineering >

A New Synthesized Microalloys Steel ODS of High Amplitude Ultrasonically Irradiation

Marzuki Silalahi 1 , Hanif Abdurrahman Wicaksana 2 , Ferhat Aziz 1 , Syahfandi Ahda 1 , Mohamad Riza Iskandar 3


  1. PSTBM-BATAN, Puspiptek Serpong Area, Tangerang Selatan 15314, Indonesia
  2. Department of Metallurgy, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
  3. Central Facility for Electron Microscopy, RWTH Aachen University, Aachen 52074, Germany


Abstract: Micropowders of oxide-dispersion-strengthened (ODS) steel have been synthesized using the ultrasonic irradiation method with variations in amplitude. The ultrasonic irradiation process is performed for 50 h at a frequency of 20 kHz with 40%, 50%, and 60% amplitudes in toluene solution. The formation of Fe-Cr microalloys in the preparation of Fe15Cr-0.5Y2O3 powder was analyzed using SEM-EDS, X-ray diffraction (XRD), and TEM-EDS. The percentage of FeCr phase mass fraction of ODS steel micropowder formed during ultrasonic irradiation with 40%:50%:60% amplitude was 12.2%:34.1%:22.1%, with 25.67:77.02:38.51 nm crystallite size. The crystallite size at 50% amplitude was the largest, and the diffusion process of Fe-Cr-Y2O3 microparticles was most dominant at 50% amplitude. The Fe and Cr phases are still present when the ODS particles successfully dispersed in the main particle.
Keywords: ODS steel, ultrasonic irradiation, high amplitude, microalloying, cavitation
Published at: Vol 23, No 3 (2019) pages: 111-118

Access Counter: 252 views, 178 PDF downloads, .

Full PDF Download


M. Yurechko, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys. Nucl. Eng. Des. 280 (2015) 686.

I. Hilger, X. Boulnat, J. Hoffmann, C.Testani, F. Bergner, Y. De Carlan, F. Ferraro, A. Ulbricht, J. Nucl. Mater.472 (2016) 206.

L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, A. Kimura, Phys. Rev. B 82 (2010) 184103.

S. Li, Z. Zhou, J. Jang, M. Wang, H. Hu, H. Sun, L. Zou, G. Zhang, L. Zhang, J. Nucl. Mater. 455/13 (2014) 194.

M. Silalahi, A. Dimyati, S. Harjanto, P. Untoro, B. Suharno, Int. J. Technol. 5/2 (2014) 169.

M. Silalahi, P. Untoro, B. Suharno, S. Harjanto, Jusami 15/3 (2014) 123.

M. Silalahi, P. Untoro, B. Suharno, S. Harjanto, Majalah Metalurgi 29/2 (2014) 171.

M. Silalahi, H.A. Wicaksana, B. Sugeng, A. Dimiyati, B. Suharno, Prosiding Seminar Nasional Teknologi Energi Nuklir, 1 (2016) 345.

I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K. Pericleous, Mater. Des.90 (2016) 979.

T. Prozorov, R. Prozorov, and K. S. Suslick, J. Am. Chem. Soc. 126/43 (2004) 13890.

N. Pokhrel, P.K. Vabbina, N. Pala, Sonochem. 29 (2016) 104.

L. Pascal, H. Guillaume, Springer (www.springer. com), 2011, [https://epdf.pub/queue/bone-quantita tive-ultrasound.html].

D.R.G. Mitchell, Microsc. Res. Tech., 71 (2008) 588.

R. J. Hill, J. Appl. Cryst. 25 (1992) 589.

Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, World J. Nano Sci. Eng. 04/01 (2014) 21.

S. Ahda, S. Misfadhila, P. Parikin, T.Y.S.P. Putra, IOP Conf. Ser. Mater. Sci. Eng., 176/1 (2017) 012048.

E. Sukirman, Y. Sarwanto. Jusami 15/2 (2014) 63.

T.Y. Wu, N. Guo, C.Y. The, J.X.W. Hay, Theory and Fundamentals of Ultrasound in Advances in Ultrasound Technology for Environmental Remediation, Springer Briefs in Green Chemistry for Sustainability, 2013, p. 5-11.

S.J. Doktycz, K.S. Suslick, Science 247/ 4946 (1990) 1067.

Q. Zhao, L. Yu, Y. Liu, H. Li, Adv. Powder Technol. 26/6 (2015) 1578.

B. Saleh, A.E. El-deen, S.M. Ahmed, J. Eng. Sci. 39/2 (2011) 327. 

Met Prep Ltd, Conducto-Mount 2 Material Safety Data Sheet, 2015. [Sciencelab.com].