Vol 24, No 1 (2020) > MJT Intl Meeting on Collaborative Technologies >

Current Status of Hydrothermal Treatment for Energy and Material Recovery Toward a Sustainable Post-consumer Material Cycle

Baskoro Lokahita 1 , Muhammad Aziz 2 , Fumitake Takahashi 1

Affiliations:

  1. Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Yokohama 152-8552, Japan
  2. Institute of Industrial Science, The University of Tokyo, Tokyo 113-8654, Japan

 

Abstract: The demand for energy-efficient and environmentally-friendly municipal solid waste (MSW) processing has increased in developing countries. The thermochemical process offers fast and reliable solution to reutilize or reduce the volume of MSW. Hydrothermal treatment comes as a novel technology for MSW treatment, which compatible with high moisture content feedstock. It involves the thermal degradation of MSW in pressurized water or steam, which promotes disintegration of cellulosic and polymer materials. Recent advances have shown effective MSW conversion into homogenous solid hydrochar with higher energy density. Alkali and chlorine content, which causes trouble in the combustor, was successfully removed by washing effect of hydrothermal treatment. There is also possibility of activated carbon production since the surface area is significantly increased after the treatment. This paper presents an overview of the latest development of hydrothermal treatment in the field of post-consumer waste and MSW treatment, with a particular focus on operating conditions and physicochemical characteristics of the hydrochar. Several experimental results from post-consumer waste feedstock were compiled and interpreted using principal component analysis to observe the effect of different operating conditions and feedstock during hydrothermal process.
Keywords: hydrothermal treatment, municipal solid waste, principal component analysis
Published at: Vol 24, No 1 (2020) pages: 25-33
DOI:

Access Counter: 178 views, 81 PDF downloads, .

Full PDF Download

References:

D. Hoornweg, P. Bhada-Tata, World Bank, Washingt. DC., (2012) 1.

J. Krook, N. Svensson, M. Eklund, Waste Manag. 32 (2012) 513.

B. Dilasari, E. Agustina, CISAK 2015, PERPIKA, (2015).

G. Dodbiba, T. Fujita, Phys. Sep. Sci. Eng. 13 (2004) 165.

J. Arjuna, Survey Komposisi dan Kandungan Bahan Kering Sampah di Sumatera Utara, Medan. Pilot Project for Capacity Development for Developing National Green House Gas Inventories (Sub Project 3) of Capacity Development for Climate Change Strategies in Indonesia. Universitas Sumatera Utara, Medan, 2012.

E. Damanhuri, T. Padmi. In M. Kojima, E. Damanhuri (Eds.), 3R Policies for Southeast and East Asia. ERIA Research Project Report 2008-6-1, ERIA, Jakarta, pp.23-52.

E. Damanhuri, T. Padmi, Pengelolaan Sampah Terpadu, 1st ed., Penerbit ITB, 2016.

P. Purwaningrum, I. Pratama, W. Handoko, J. Teknol. Lingkung. Fak. Arsit. Lansek. dan Teknol. Lingkung. Univ. Trisakti 5 (2014) 159.

F. Kokalj, N. Samec, Adv. Intern. Combust. Engines Fuel Technol. (2013) 1.

T. Fruergaard, T. Astrup, Waste Manag. 31 (2011) 572.

L.A. Ruth, Prog. Energy Combust. Sci. 24 (1998) 545.

2006 IPCC Guidelines for National Greenhouse Gas Inventories, Hayama, 2006.

Waste to Energy Guidebook, Ministry of Energy and Mineral Resources of Republic Indonesia, 2015.

U. Arena, Waste Manag. 32 (2012) 625.

B. Leckner, Waste Manag. 37 (2015) 13.

A. Cuadrat, A. Abad, P. Gayán, L.F. De Diego, F. García-Labiano, J. Adánez, (2012).

A. Bosmans, I. Vanderreydt, D. Geysen, L. Helsen, J. Clean. Prod. 55 (2013) 10.

D. Dayton, Natl. Renew. Energy Lab. (2002) 28.

J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, J. Ind. Eng. Chem. 40 (2016) 1.

C. Zhou, W. Fang, W. Xu, A. Cao, R. Wang, J. Clean. Prod. 80 (2014) 80.

H. Marsh, F. Rodríguez-Reinoso, Act. Carbon, Elsevier, 2006, pp. 454.

M. Rudolfsson, W. Stelte, T.A. Lestander, Appl. Energy 140 (2015) 378.

J.A. Libra, K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.M. Titirici, C. Fühner, O. Bens, J. Kern, K.H. Emmerich, Biofuels 2 (2011) 71.

P. Prawisudha, T. Namioka, K. Yoshikawa, Appl. Energy 90 (2012) 298.

S. Novianti, A. Nurdiawati, I.N. Zaini, P. Prawisudha, H. Sumida, K. Yoshikawa, Energy Procedia 75 (2015) 584.

H.J. Huang, X.Z. Yuan, Bioresour. Technol. 200 (2016) 991.

M. Helmy, J. Rawlins, J. Beyer, J. Lampreia, F. Tumiwa, (2014).

R. Ramos Casado, J. Arenales Rivera, E. Borjabad García, R. Escalada Cuadrado, M. Fernández Llorente, R. Bados Sevillano, A. Pascual Delgado, Waste Manag. 47 (2016) 206.

A. Demirbas, Prog. Energy Combust. Sci. 30 (2004) 219.

S.V. Vassilev, D. Baxter, C.G. Vassileva, Fuel 112 (2013) 391.

P.H. Brunner, H. Rechberger, Waste Manag. 37 (2015) 3.

A. Kruse, A. Funke, M.M. Titirici, Curr. Opin. Chem. Biol. 17 (2013) 515.

A. Funke, F. Ziegler, Biofuels, Bioprod. Biorefining 4 (2010) 160.

C. Falco, N. Baccile, M.-M. Titirici, Green Chem. 13 (2011) 3273.

Y. Marcus, Fluid Phase Equilib. 164 (1999) 131.

O. Bobleter, Prog. Polym. Sci. 19 (1994) 797.

S. Novianti, M.K. Biddinika, P. Prawisudha, K. Yoshikawa, Procedia Environ. Sci. 20 (2014) 46.

F. Hardi, M. Mäkelä, K. Yoshikawa, Appl. Energy 204 (2017) 1026.

M. Mäkelä, V. Benavente, A. Fullana, Appl. Energy 155 (2015) 576.

S.K. Hoekman, A. Broch, C. Robbins, B. Zielinska, L. Felix, Biomass Convers. Biorefinery 3 (2013) 113.

B. Lokahita, K. Yoshikawa, F. Takahashi, Energy Procedia 105 (2017) 610.

B. Triyono, P. Prawisudha, M. Aziz, Mardiyati, A.D. Pasek, K. Yoshikawa, Waste Manag. 95 (2019) 1.

B. Lokahita, M. Aziz, K. Yoshikawa, F. Takahashi, Appl. Energy 207 (2017) 107.

N.D. Berge, K.S. Ro, J. Mao, J.R.V. V Flora, M.A. Chappell, S. Bae, Environ. Sci. Technol. 45 (2011) 5696.

L. Li, R. Diederick, J.R.V. Flora, N.D. Berge, Waste Manag. 33 (2013) 2478.

M.K. Jindal, M.K. Jha, Indian Chem. Eng. 58 (2016) 157.

C.-C. Chang, C.-P. Chen, C.-S. Yang, Y.-H. Chen, M. Huang, C.-Y. Chang, J.-L. Shie, M.-H. Yuan, Y.-H. Chen, C. Ho, K. Li, M.-T. Yang, Sustain. Environ. Res. 26 (2016) 262.

N.U. Saqib, H.B. Sharma, S. Baroutian, B. Dubey, A.K. Sarmah, Sci. Total Environ. 690 (2019) 261.

M. Daszykowski, B. Walczak, D. Massart, Chemom. Intell. Lab. Syst. 65 (2003) 97.

P. Geladi, Spectrochim. Acta Part B At. Spectrosc. 58 (2003) 767.

D.M. Mason, K.N. Gandhi, Fuel Process. Technol. 7 (1983) 11.

A. Funke, F. Reebs, A. Kruse, Fuel Process. Technol. 115 (2013) 261.

I.N. Zaini, S. Novianti, A. Nurdiawati, A.R. Irhamna, M. Aziz, K. Yoshikawa, Fuel Process. Technol. 160 (2017) 109.