Vol 24, No 2 (2020) > Chemical Engineering >

Effect of Catholyte Concentration on Current Production During Chocolate Industry Wastewater Treatment by a Microbial Fuel Cell

Diana Rahayuning Wulan 1 , Suprihanto Notodarmojo 2

Affiliations:

  1. Research Unit of Clean Technology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia
  2. Department of Environmental Engineering, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia

 

Abstract:

Microbial
fuel cells (MFC) use bacteria as catalyst to oxidize organic and/or inorganic
substrate to produce current.  Wastewater
could function as electron donor, in anode chamber, and very potential as
energy source.   Catholyte as electron
acceptor influences on power production on MFC, by increasing the availability
of electron acceptor.  This research aims
to determine the influence of catholyte variation to current production on
aerobic two-chamber MFC.  Reactor was
operated batch aerobically on incubator at 37+1 oC, which
oxygen supplied by continuous aerator on anode chamber and in cathode chamber
was varied with and without aeration.  
MFC consists of two 1-liter beaker glasses with iron sheets as anode and
cathode, separated by membrane. 
Wastewater from chocolate industry as substrate was oxidized using
consortium isolated bacteria from the sludge wastewater itself.  Catholytes were also varied by adding NaCl
0,01N, 0,05N, 0,1N and 0,3N, compared with aquadest (as blanko).  Result showed that COD removal efficiency
during 72 hours reached 65-83% without aeration and 76-89% with aeration on
cathode chamber.  During MFC process
occurred, current increased equal to the increasing of catholyte concentration
up to NaCl 0,05N and tend to decreased after it.  Oxygen addition at cathode chamber influenced
the current production.

Keywords: Microbial fuel cell, chocolate wastewater, electron, catholyte, current
Published at: Vol 24, No 2 (2020) pages: 53-58
DOI:

Access Counter: 117 views, 86 PDF downloads, .

Full PDF Download

References:

B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder,

J. Keller, Freguia, P. Aelterman, W. Verstraete, K.

Rabaey. Environ. Sci. Technol. 40/17 (2006) 5181.

S. Kim, K.J. Chae, M.J. Choi, W. Verstraete, Environ. Eng. Res. 16/4 (2011) 51.

K. Rabaey, J. Rodriguez, L.L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, K.H. Nealson. ISME J. 1/1 (2007) 9.

D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven, Bioresour. Technol. 101/6 (2010) 1533.

Y.H. Jia, H.T. Tran, D.H. Kim, S.J. Oh, D.H. Park, R.H. Zhang, D.H. Ahn. Bioprocess Biosyst. Eng. 31/4 (2008) 315.

A.S. Mathuriya, V.N. Sharma, J. Biochem. Technol. 1 (2008) 49.

O. Lefebvre, Z. Tan, S. Kharkwal, H.Y. Ng, Bioresour. Technol. 112 (2012) 336.

G.C. Gil, I.S. Chang, B.H. Kim, M. Kim, J.K. Jang, H.S. Park, H.J. Kim. Biosens. Bioelectron. 18/4 (2003) 327.

APHA, Standard Methods for the Examination of Water and Wastewater, 21th Ed. 2005. p.1080

B.H. Kim, I.S. Chang, G.M. Gadd, Appl. Microbiol. Biotechnol. 76/3 (2007) 485.

K. Rabaey, N. Boon, S.D. Siciliano, M. Verhaege, W. Verstraete, Appl. Environ. Microbiol. 70/9 (2004) 5373.

J.R. Kim, B. Min, B.E. Logan, Appl. Microbiol. Biotechnol. 68/1 (2005) 23.

M.H. Osman, A.A. Shah, F.C. Walsh, Biosens. Bioelectron. 26/3 (2010) 953.

Jr C.P. Leslie Grady, G.T. Daigger, H.C. Lim, Biological wastewater treatment. 2nd Ed. (rev. and expanded). New York: Marcel Dekker, 1999. p.1078

S.A. Patil, V.P. Surakasi, S. Koul, S. Ijmulwar, A. Vivek, Y.S. Shouche, B.P. Kapadnis. Bioresour. Technol. 100/21 (2009) 5132.

H. Liu, S. Cheng, B.E. Logan, Environ. Sci. Technol. 39/2 (2005) 658.

B. Min, Ó.B. Román, I. Angelidaki, Biotechnol. Lett. 30/7 (2008) 1213.

G.S. Jadhav, M.M. Ghangrekar, Bioresour. Technol. 100/2 (2009) 717.

M.A. Rodrigo, P. Cañizares, H. García, J.J. Linares, J. Lobato, Bioresour. Technol. 100/20 (2009) 4704.

G.M. Fair, J.C. Geyer, D.A. Okun, Water and Wastewater Engineering, New York: John Wiley and Sons., 1968. p. 608