Vol 15, No 1 (2011) > Articles >

The Formation Design of Noise Reducers from Plywood, Foam, Tray, dan Coconut Fiber for Static Sources

Melati Fachrul 1 , Wisnu Yulyanto 2 , Asharani Merya 1

Affiliations:

  1. Jurusan Tenik Lingkungan, Universitas Trisakti, Jakarta 11440, Indonesia
  2. Lab Kebisingan dan Getaran, PUSARPEDAL KLH, Serpong, Tangerang 15310, Indonesia

 

Abstract: Research  was  conducted  in  a  semi-anechoic  room  using  a  method  referring  to  the  ISO  3745.  The design  used  is  the Hemisphere in which the source of noise is analogous to engines in an industry. The value reduction in the rate of sound  power is obtained by comparing the sound power level before and after control is given. The noise control test materials used  consist  of  layers  of plywood,  foam,  fiber  and  tray  (egg  box).  The  effectiveness  of  these  materials  is  tested  by measuring the sound transmission loss (STL). Test results reveal that the sound power level (Lw) of the source of noise produces a high Lw which is 99.6 dB. at a frequency of 8000 Hz. The measurement of Lw on the source of noise which is  covered  by  plywood produces  a  total  of  78.66  dB  Lw  with  an  Lw  reduction  of  21.02%. The  measurement  on  the sound  source  covered  by  plywood  and foam  materials  produces  a  total  of  47.79  dB  Lw  with  an  Lw reduction  of 52.02%. The measurement of Lw by combining plywood, foam, and tray produces a total of 33.02 dB Lw with an Lw reduction of 66.84%. The measurement of the total Lw after being covered by plywood, foam, fiber, and tray is a total of 31.94 Lw dB with an Lw reduction of 67.93%. 
Keywords: design noise reduction, insertion loss, static source
Published at: Vol 15, No 1 (2011) pages: 63-67
DOI:

Access Counter: 1129 views, 2149 PDF downloads, .

Full PDF Download

References:

P.A. Koushki, N. Kartam, N. Al-Mutairi, Civ. Eng. Env. Syst. 21/2 (2004) 127.

A.A. Shikdar, N.M. Sawaqed, Comput. Ind. Eng. 45/4 (2003) 563.

D.P. Sasongko, et al., Kebisingan Lingkungan, Universitas Diponegoro, Semarang, 2000.

L. Goines, L. Hagler, South. Med. J. 100/3 (2007) 287.

P. Rabinowitz, Am. Fam. Phy. 61 (2000) 2749, 2759.

Y.J. Na, J. Lancaster, J. Casali, G. Cho, Text. Res. J. 77/5 (2007) 330.

M. Kumar, S. Chakravorty, P. Singla, J.L. Junkins, J. of Sound and Vibration 327/1-2 (2009) 144.

Z. Chen, W.C. Xie, J. of Sound and Vibration 280/1-2 (2005) 235.

M. Ishihama, Int. J. of Vehicle Noise and Vibration 5/3 (2009) 219.

J. P. Carneal, F. Charette, C.R, Fuller, J. of Sound and Vibration 270/4-5 (2004) 781.

Y. Lee, C. Joo, Autex Res. J. 3/2 (2003) 78.

A. Khuriati, E. Komaruddin, M. Nur, Berkala Fisika 9/1 (2006) 15.

ISO 3745. Acoustics Determination of Sound Power Levels of Noise Sources Using Sound Pressure Precision Methods for Anechoic and Hemi-Anechoic Rooms, HIS Inc., International Organization for Standardization, Geneva, Switzerland, 2003.

A.R. Barnard, M.D. Rao, Measurement of Sound Transmission Loss Using a Modified Four Microphone Impedance Tube. NOISE-CON 2004. ME-EM Department Michigan Tech University Houghton, USA, 2004, p.12.

M. Hendrayana, D. Rusjadi, PPI-KIM X (2004) 58.

T. Masahiro, D. Takahashi, Proceedings of 19th International Congress on Acoustics, Madrid, 2007, p.6.

R. Zulkifli, Zulkarnain, M.J.M. Nor, Am. J. Appl. Sci. 7/2 (2010) 260.

F. Yasin, B. Handaga, J. Teknik Gelagar 16/1 (2005) 20.

Anonim, Keputusan Menteri Negara Lingkungan Hidup No.: 48/MENLH/11/1996, tentang Baku Mutu Tingkat Kebisingan, Kementerian Lingkungan Hidup, Jakarta, 1996.